Complete decomposition of Dickson-type recursive polynomials and a related Diophantine equation
نویسنده
چکیده
We characterize decomposition over C of polynomials fn(x) defined by the generalized Dicksontype recursive relation f0(x) = B, f1(x) = x, fn+1(x) = xfn(x)− afn−1(x) (n ≥ 1), where B, a ∈ Q or R. This parametric class of polynomials includes Fibonacci, Pell, Fermat, Dickson, Lucas (w-), Pell-Lucas, Fermat-Lucas polynomials as well as Chebyshev polynomials of the first and second kind. As an application of the decomposition result, we show that the Diophantine equation f (a,B) n (x) = f (â,B̂) m (y) with f (a,B) n , f (â,B̂) m ∈ Q[x] and min(m, n) ≥ 3 has only finitely many rational solutions (x, y) with a bounded denominator, except in a few explicitly stated exceptions. This vastly extends work of A. Dujella/R. F. Tichy (Diophantine equations for second order recursive sequences of polynomials, Quart. J. Math. 52 (2001), 161–169) and A. Dujella/I. Gusić (Decomposition of a recursive family of polynomials, Monatsh. Math., to appear). In particular, a complete answer to a question posed by the latter authors is presented. Résumé. Nous caractérisons la décomposition sur C de polynômes fn(x) définis par la relation de récurrence de type Dickson généralisée : f0(x) = B, f1(x) = x, fn+1(x) = xfn(x)− afn−1(x) (n ≥ 1), où B, a ∈ Q ou R. Cette classe de polynômes paramétriques inclut les polynômes de Fibonacci, Pell, Fermat, Dickson, Lucas (w-), Pell-Lucas, Fermat-Lucas ainsi que les polynômes de Tchebychev de première et deuxième espèces. Une application de notre résultat permet de montrer que l’équation diophantienne f (a,B) n (x) = f (â,B̂) m (y) avec f (a,B) n , f (â,B̂) m ∈ Q[x] et min(m, n) ≥ 3 n’admet qu’un nombre fini de solutions rationnelles (x, y) avec dénominateur borné, à quelques exceptions près que nous donnons explicitement. Ceci prolonge les travaux de A. Dujella et R. F. Tichy (Diophantine equations for second order recursive sequences of polynomials, Quart. J. Math. 52 (2001), 161–169) et de A. Dujella/I. Gusić (Decomposition of a recursive family of polynomials, Monatsh. Math., à parâıtre). En particulier, nous répondons entièrement à la question posée par les deux derniers auteurs sus-cités.
منابع مشابه
Complete decomposition of Dickson-type polynomials and related Diophantine equations
We characterize decomposition over C of polynomials f (a,B) n (x) defined by the generalized Dickson-type recursive relation (n ≥ 1), f (a,B) 0 (x) = B, f (a,B) 1 (x) = x, f (a,B) n+1 (x) = xf (a,B) n (x)− af (a,B) n−1 (x), where B, a ∈ Q or R. As a direct application of the uniform decomposition result, we fully settle the finiteness problem for the Diophantine equation f (a,B) n (x) = f (â,B̂)...
متن کاملDiophantine equations for second order recursive sequences of polynomials
Let B be a nonzero integer. Let define the sequence of polynomials Gn(x) by G0(x) = 0, G1(x) = 1, Gn+1(x) = xGn(x) +BGn−1(x), n ∈ N. We prove that the diophantine equation Gm(x) = Gn(y) for m,n ≥ 3, m 6= n has only finitely many solutions.
متن کاملHomotopy Perturbation Method for the Generalized Fisher’s Equation
More recently, Wazwaz [An analytic study of Fisher’s equation by using Adomian decomposition method, Appl. Math. Comput. 154 (2004) 609–620] employed the Adomian decomposition method (ADM) to obtain exact solutions to Fisher’s equation and to a nonlinear diffusion equation of the Fisher type. In this paper, He’s homotopy perturbation method is employed for the generalized Fisher’s equation to o...
متن کاملNumerical solution of fuzzy Hunter-Saxton equation by using Adomian decomposition and Homotopy analysis methods
In this paper, a fuzzy Hunter-Saxton equation is solved by using the Adomian'sdecomposition method (ADM) and homotopy analysis method (HAM). Theapproximation solution of this equation is calculated in the form of series whichits components are computed by applying a recursive relation. The existenceand uniqueness of the solution and the convergence of the proposed methodsare proved. A numerical...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006